О решении обратной задачи Дидоны в классе выпуклых поверхностей вращения
С помощью принципа максимума Понтрягина доказывается обратное изопериметрическое неравенство, и тем самым решается обратная задача Дидоны, для λ-выпуклых поверхностей вращения в трехмерном евклидовом пространстве....
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2016
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/99857 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О решении обратной задачи Дидоны в классе выпуклых поверхностей вращения / К.Д. Драч // Доповiдi Нацiональної академiї наук України. — 2016. — № 4. — С. 7-12. — Бібліогр.: 13 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | С помощью принципа максимума Понтрягина доказывается обратное изопериметрическое неравенство, и тем самым решается обратная задача Дидоны, для λ-выпуклых поверхностей вращения в трехмерном евклидовом пространстве. |
---|