Прогнозування максимальних умовних дисперсій багатовимірних процесів із різнотемповою дискретизацією на основі адаптивних моделей GARCH

A method for synthesis of GARCH models for forecasting maximal conditional dispersions of multidimensional heteroskedastic processes under discretisation of input disturbances with small sampling periods and of output coordinates with large ones is considered. The dynamics of processes in a stochast...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Romanenko, V. D., Milyavsky, Yu. L.
Формат: Стаття
Мова:rus
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2009
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/107275
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозиторії

System research and information technologies
Опис
Резюме:A method for synthesis of GARCH models for forecasting maximal conditional dispersions of multidimensional heteroskedastic processes under discretisation of input disturbances with small sampling periods and of output coordinates with large ones is considered. The dynamics of processes in a stochastic medium is described by matrix-polinomial models of autoregression and a sliding mean with multirate discretization. An algorithm for adaptive setting of GARCH models is developed. Experimental results for such a setting as well as forecasting of maximal conditional dispersions under optimal coefficients are presented.