Адаптивний квантовий генетичний алгоритм для 0–1 задачі пакування рюкзака
Quantum Genetic Algorithm (QGA) has a number of advantages in comparison with its classical version: operating speed, small population size and auto-balance between the global search and the local search. It is based on the ideas of traditional evolutionary algorithms, applied to the quantum computa...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
2018
|
Теми: | |
Онлайн доступ: | http://journal.iasa.kpi.ua/article/view/125371 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | System research and information technologies |
Репозитарії
System research and information technologiesРезюме: | Quantum Genetic Algorithm (QGA) has a number of advantages in comparison with its classical version: operating speed, small population size and auto-balance between the global search and the local search. It is based on the ideas of traditional evolutionary algorithms, applied to the quantum computations technology, which operate with quantum bits, superposition of states and quantum measurements. This paper proposes a QGA with a new adaptive quantum gate operator and a restoring technology for the quantum chromosome during the process of solving combinatorial problems with constraints. Meta-optimization of the primary algorithm parameters is used for providing the algorithm efficiency. The productiveness of the suggested approach is proven by the model studies, carried out using a wide range of test 0–1 knapsack problems. |
---|