2025-02-22T17:26:38-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journaliasakpiua-article-138168%22&qt=morelikethis&rows=5
2025-02-22T17:26:38-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journaliasakpiua-article-138168%22&qt=morelikethis&rows=5
2025-02-22T17:26:38-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:26:38-05:00 DEBUG: Deserialized SOLR response

Про існування та стабілізацію сильного розв’язку автономних стохастичних диференціальних рівнянь Іто–Скорохода в частинних похідних з випадковими параметрами

This paper considers the asymptotic behavior of the strong solution of the linear partial stochastic differential Ito–Skorokhod equation in the corresponding space with random parameters. An existence of the strong solution is proved and sufficient conditions for the asymptotic stability and the mea...

Full description

Saved in:
Bibliographic Details
Main Authors: Yasynskyy, Volodymyr K., Yurchenko, Igor V.
Format: Article
Language:English
Published: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2018
Subjects:
Online Access:http://journal.iasa.kpi.ua/article/view/138168
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers the asymptotic behavior of the strong solution of the linear partial stochastic differential Ito–Skorokhod equation in the corresponding space with random parameters. An existence of the strong solution is proved and sufficient conditions for the asymptotic stability and the mean square instability of a strong solution of a similar equation are obtained. The stochastic model of complex systems, which is proposed in this paper, is an attempt to take into consideration the full extent of randomness in the studying of real processes, which are described by differential equations in partial derivatives, on the right side of which a diffuse perturbations of the Brownian process type and random perturbations of other types are taken into consideration.