Якісні властивості та скінченновимірність з точністю до малого параметра слабких розв’язків кліматологічної моделі Будико–Селлерса

A qualitative analysis of the solutions behavior for the Budyko–Sellers energy balance climate model, considered on the Riemannian manifold without the boundary, is carried out. The global existence of the weak solution for the investigated problem with arbitrary initial data from the phase space is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Zgurovsky, Michael Z., Kasyanov, Pavlo O., Gorban, Nataliia V., Paliichuk, Liliia S.
Формат: Стаття
Мова:Українська
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2018
Теми:
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/152058
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:A qualitative analysis of the solutions behavior for the Budyko–Sellers energy balance climate model, considered on the Riemannian manifold without the boundary, is carried out. The global existence of the weak solution for the investigated problem with arbitrary initial data from the phase space is established. Solutions properties and regularity are studied. The Lyapunov function is found. The theorems on the existence of global and trajectory attractors for multi-valued semi-flow generated by all weak solutions of the problem are proved. The properties of attractors are studied. The relationship between attractors and the space of complete trajectories of the problem is established. The character of attraction of solutions to global and trajectory attractors and their structure are investigated. The finite-dimensionality up to a small parameter of the solutions dynamics for the problem is established.