Функціональні послідовності з нечітким аргументом: збіжність множин рівня

The main consideration subject is functional sequences fn(A) with convex upper semicontinuous fuzzy number A for argument; it is supposed that limn→∞fn(x)=f(x), and this convergence is uniform on each closed interval within suppA. The paper proposes sufficient conditions for fn(A) to converge in the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Spectorsky, Igor Ya.
Формат: Стаття
Мова:rus
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2019
Теми:
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/165701
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:The main consideration subject is functional sequences fn(A) with convex upper semicontinuous fuzzy number A for argument; it is supposed that limn→∞fn(x)=f(x), and this convergence is uniform on each closed interval within suppA. The paper proposes sufficient conditions for fn(A) to converge in the sense that a sequence of level sets [fn(A)]α converges with respect to Hausdorff distance dH([fn(A)]α,[f(A)]α). It is proved that: limn→∞dH([fn(A)]α,[f(A)]α)=0 for each 0<α≤1 assuming continuity of fn(x) (n≥1) and f(x), without the assumption about an existence of a derivative. Also, it is proved that a sequence fn(A) (n≥1) converges with respect to distance ρ(fn(A),f(A))=sup0<α≤1dH([fn(A)]α,[f(A)]α) in the space of fuzzy sets, additionally assuming that fn(A) converges uniformly on the whole suppA. In this case, for the sake of finiteness of Hausdorff distance for all 0<α≤1, fuzzy set A is supposed to be normal.