Прогнозування динамічних VaR і CVaR на основі квінтильної регресії з використанням металог розподілу

The paper proposes a new method of dynamic VaR and CVaR (ES) risk measures forecasting. Quantile linear GARCH model is chosen as the main forecasting model for time series quantiles. To build a forecast, the values of quantiles are approximated by the metalog distribution, which makes it possible to...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Zrazhevsky, Grigoriy, Zrazhevska, Vira
Формат: Стаття
Мова:Англійська
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2021
Теми:
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/236942
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:The paper proposes a new method of dynamic VaR and CVaR (ES) risk measures forecasting. Quantile linear GARCH model is chosen as the main forecasting model for time series quantiles. To build a forecast, the values of quantiles are approximated by the metalog distribution, which makes it possible to use analytical formulas to evaluate risk measures. The method of VaR and CVaR forecasting is formulated as a step-by-step algorithm. At the first stage, an initial model is built to obtain variance estimates. The predicted variance values obtained from the constructed model are used at the second stage to find the QLGARCH model coefficients by solving the minimization problem. At the third stage, the QLGARCH models are estimated on a non uniform quantile grid. The obtained predicted values of quantiles are used to estimate the approximating metalog distribution. The investigated theory is applied to VaR and CVaR forecasting for time series of daily log return of the DJI index.