Правдоподібна нечітка кластеризація даних на основі еволюційного методу божевільних котів

The problem of fuzzy clustering of large datasets that are sent for processing in both batch and online modes, based on a credibilistic approach, is considered. To find the global extremum of the credibilistic fuzzy clustering goal function, the modification of the swarm algorithm of crazy cats swar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Bodyanskiy, Yevgeniy, Shafronenko, Alina, Pliss, Iryna
Format: Artikel
Sprache:Ukrainisch
Veröffentlicht: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2021
Schlagworte:
Online Zugang:http://journal.iasa.kpi.ua/article/view/244607
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:System research and information technologies

Institution

System research and information technologies
Beschreibung
Zusammenfassung:The problem of fuzzy clustering of large datasets that are sent for processing in both batch and online modes, based on a credibilistic approach, is considered. To find the global extremum of the credibilistic fuzzy clustering goal function, the modification of the swarm algorithm of crazy cats swarms was introduced, that combined the advantages of evolutionary algorithms and a global random search. It is shown that different search modes are generated by a unified mathematical procedure, some cases of which are known algorithms for both local and global optimizations. The proposed approach is easy to implement and is characterized by the high speed and reliability in problems of multi-extreme fuzzy clustering.