Узагальнення формули Троттера–Далецького для систем типу "реакція–дифузія"

An iterative method for constructing a solution to the Cauchy problem for a system of parabolic equations with a nonlinear potential has been proposed and substantiated. The method is based on the Trotter–Daletsky formula, generalized for a nonlinear perturbation of an elliptic operator. The idea of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Bondarenko, Viktor, Kravchenko, Anna, Sobko, Tetiana
Формат: Стаття
Мова:rus
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2021
Теми:
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/252318
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:An iterative method for constructing a solution to the Cauchy problem for a system of parabolic equations with a nonlinear potential has been proposed and substantiated. The method is based on the Trotter–Daletsky formula, generalized for a nonlinear perturbation of an elliptic operator. The idea of generalization is the construction of a composition of the semigroup generated by the Laplacian and the phase flow corresponding to a system of ordinary differential equations. A computational experiment performed for a two-dimensional system of semilinear parabolic equations of the “reaction–diffusion” type confirms estimates for the convergence of iterations established in the proof of this formula. Obtained results suggest the feasibility of an unconventional approach to modeling dynamic systems with distributed parameters.