Узагальнення формули Троттера–Далецького для систем типу "реакція–дифузія"

An iterative method for constructing a solution to the Cauchy problem for a system of parabolic equations with a nonlinear potential has been proposed and substantiated. The method is based on the Trotter–Daletsky formula, generalized for a nonlinear perturbation of an elliptic operator. The idea of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Bondarenko, Viktor, Kravchenko, Anna, Sobko, Tetiana
Format: Artikel
Sprache:Russisch
Veröffentlicht: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2021
Schlagworte:
Online Zugang:http://journal.iasa.kpi.ua/article/view/252318
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:System research and information technologies

Institution

System research and information technologies
Beschreibung
Zusammenfassung:An iterative method for constructing a solution to the Cauchy problem for a system of parabolic equations with a nonlinear potential has been proposed and substantiated. The method is based on the Trotter–Daletsky formula, generalized for a nonlinear perturbation of an elliptic operator. The idea of generalization is the construction of a composition of the semigroup generated by the Laplacian and the phase flow corresponding to a system of ordinary differential equations. A computational experiment performed for a two-dimensional system of semilinear parabolic equations of the “reaction–diffusion” type confirms estimates for the convergence of iterations established in the proof of this formula. Obtained results suggest the feasibility of an unconventional approach to modeling dynamic systems with distributed parameters.