Багатокрокове прогнозування в лінеаризованих латентних просторах для навчання репрезинтацій
In this paper, we derive a novel method as a generalization over LCEs such as E2C. The method develops the idea of learning a locally linear state space by adding a multi-step prediction, thus allowing for more explicit control over the curvature. We show that the method outperforms E2C without dras...
Gespeichert in:
| Datum: | 2022 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
2022
|
| Schlagworte: | |
| Online Zugang: | http://journal.iasa.kpi.ua/article/view/269583 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | System research and information technologies |
Institution
System research and information technologies| Zusammenfassung: | In this paper, we derive a novel method as a generalization over LCEs such as E2C. The method develops the idea of learning a locally linear state space by adding a multi-step prediction, thus allowing for more explicit control over the curvature. We show that the method outperforms E2C without drastic model changes which come with other works, such as PCC and P3C. We discuss the relation between E2C and the presented method and derive update equations. We provide empirical evidence, which suggests that by considering the multi-step prediction, our method – ms-E2C – allows learning much better latent state spaces in terms of curvature and next state predictability. Finally, we also discuss certain stability challenges we encounter with multi-step predictions and how to mitigate them. |
|---|