Дослідження гібридних автокодувальників з використанням трансформерів для біометричної верифікації користувача

Our current study extends previous work on motion-based biometric verification using sensory data by exploring new architectures and more complex input from various sensors. Biometric verification offers advantages like uniqueness and protection against fraud. The state-of-the-art transformer archit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Havrylovych, Mariia, Danylov, Valeriy
Format: Artikel
Sprache:Englisch
Veröffentlicht: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2023
Schlagworte:
Online Zugang:http://journal.iasa.kpi.ua/article/view/284317
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:System research and information technologies

Institution

System research and information technologies
Beschreibung
Zusammenfassung:Our current study extends previous work on motion-based biometric verification using sensory data by exploring new architectures and more complex input from various sensors. Biometric verification offers advantages like uniqueness and protection against fraud. The state-of-the-art transformer architecture in AI is known for its attention block and applications in various fields, including NLP and CV. We investigated its potential value for applications involving sensory data. The research proposes a hybrid architecture, integrating transformer attention blocks with different autoencoders, to evaluate its efficacy for biometric verification and user authentication. Various configurations were compared, including LSTM autoencoder, transformer autoencoder, LSTM VAE, and transformer VAE. Results showed that combining transformer blocks with an undercomplete deterministic autoencoder yields the best performance, but model performance is significantly influenced by data preprocessing and configuration parameters. The application of transformers for biometric verification and sensory data appears promising, performing on par with or surpassing LSTM-based models but with lower inference and training time.