Порівняння ефективності методів заповнення пропущених даних під час розроблення моделей прогнозування

Missing data is a common issue in data analysis and machine learning. This article analyzes the impact of missing data imputation methods during the data preprocessing stage on the quality of forecasting models. Selected methods are listwise deletion, mean imputation, and two implementations of the...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Author: Popov, Andrii
Format: Article
Language:English
Published: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2025
Subjects:
Online Access:http://journal.iasa.kpi.ua/article/view/301918
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:System research and information technologies

Institution

System research and information technologies