Порівняння ефективності методів заповнення пропущених даних під час розроблення моделей прогнозування
Missing data is a common issue in data analysis and machine learning. This article analyzes the impact of missing data imputation methods during the data preprocessing stage on the quality of forecasting models. Selected methods are listwise deletion, mean imputation, and two implementations of the...
Saved in:
| Date: | 2025 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
2025
|
| Subjects: | |
| Online Access: | http://journal.iasa.kpi.ua/article/view/301918 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | System research and information technologies |
Institution
System research and information technologiesBe the first to leave a comment!