Подолання викликів у глибокому навчанні для виявлення раку шкіри
Skin cancer is one of the most prevalent malignancies worldwide. A critical factor in reducing mortality rates is the early detection. It underscores the need for accessible Computer-Aided Diagnostic (CAD) systems. Recent advancements in Deep Learning (DL) have shown great promise in addressing this...
Gespeichert in:
| Datum: | 2025 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
2025
|
| Schlagworte: | |
| Online Zugang: | http://journal.iasa.kpi.ua/article/view/320423 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | System research and information technologies |
Institution
System research and information technologies| Zusammenfassung: | Skin cancer is one of the most prevalent malignancies worldwide. A critical factor in reducing mortality rates is the early detection. It underscores the need for accessible Computer-Aided Diagnostic (CAD) systems. Recent advancements in Deep Learning (DL) have shown great promise in addressing this challenge. Despite this progress in the field of machine learning, researchers encounter numerous obstacles when it comes to skin cancer classification. This article examines the current state of DL-based skin cancer diagnostics. Critical aspects of system development, including data preprocessing, model training, and performance evaluation, are addressed. Moreover, the article highlights opportunities for innovation that could significantly advance the field. By providing a comprehensive overview, this article aims to guide researchers and practitioners in optimizing DL models, addressing existing limitations, and exploring emerging trends to enhance diagnostic accuracy and accessibility. |
|---|