Прогнозування часового ряду за моделлю нормалізації

Empirical constructions of time series models based on the reduction of initial data to normally distributed values have been proposed. The goal of a normalization method is to construct an optimal forecast that is linear for the updated data, and the forecasted original data is recovered through th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Bondarenko, Viktor, Bondarenko, Valeriia
Format: Artikel
Sprache:Englisch
Veröffentlicht: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2025
Schlagworte:
Online Zugang:http://journal.iasa.kpi.ua/article/view/336056
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:System research and information technologies

Institution

System research and information technologies
Beschreibung
Zusammenfassung:Empirical constructions of time series models based on the reduction of initial data to normally distributed values have been proposed. The goal of a normalization method is to construct an optimal forecast that is linear for the updated data, and the forecasted original data is recovered through the inverse transformation. The different variants of such transformations have been considered, including the reduction of initial data to Gaussian fractional Brownian motion and a one-dimensional transformation using a strictly monotonic function. The computational experiment based on real data, which allows for a stationary model, confirms the higher quality of the forecast by the normalization method compared to traditional models.