Прогнозування якості технологічних процесів методами штучних нейронних мереж

A set of models of feed-forward neural networks has been created to obtain operational forecasts of the quality of mechanical engineering processes. It is established that the use of the Back Propagation of Error machine learning algorithm allows for obtaining forecasted estimates for the controlled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Fedin, Serhii, Romaniuk, Oksana, Trishch, Roman
Format: Artikel
Sprache:English
Veröffentlicht: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2025
Schlagworte:
Online Zugang:http://journal.iasa.kpi.ua/article/view/343080
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:System research and information technologies

Institution

System research and information technologies
Beschreibung
Zusammenfassung:A set of models of feed-forward neural networks has been created to obtain operational forecasts of the quality of mechanical engineering processes. It is established that the use of the Back Propagation of Error machine learning algorithm allows for obtaining forecasted estimates for the controlled parameter of the metalworking process with significantly smaller ranges of the mean absolute percentage error, mean square error, relative approximation error, and variance ratio criterion compared to the BFGS algorithm. It is shown that the proposed MLP neural network models can be recommended for practical applications in controlling the accuracy of the machining process of shaft-type parts.