Прогнозування якості технологічних процесів методами штучних нейронних мереж

A set of models of feed-forward neural networks has been created to obtain operational forecasts of the quality of mechanical engineering processes. It is established that the use of the Back Propagation of Error machine learning algorithm allows for obtaining forecasted estimates for the controlled...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Fedin, Serhii, Romaniuk, Oksana, Trishch, Roman
Формат: Стаття
Мова:English
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2025
Теми:
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/343080
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:A set of models of feed-forward neural networks has been created to obtain operational forecasts of the quality of mechanical engineering processes. It is established that the use of the Back Propagation of Error machine learning algorithm allows for obtaining forecasted estimates for the controlled parameter of the metalworking process with significantly smaller ranges of the mean absolute percentage error, mean square error, relative approximation error, and variance ratio criterion compared to the BFGS algorithm. It is shown that the proposed MLP neural network models can be recommended for practical applications in controlling the accuracy of the machining process of shaft-type parts.