2025-02-23T13:59:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journaliasakpiua-article-41735%22&qt=morelikethis&rows=5
2025-02-23T13:59:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journaliasakpiua-article-41735%22&qt=morelikethis&rows=5
2025-02-23T13:59:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:59:07-05:00 DEBUG: Deserialized SOLR response

Лінійні оптимізаційні задачі на разміщеннях з імовірнісною невизначеністю: властивості і розв’язання

Authors study properties of linear optimization problems under probabilistic uncertainty while defining a problem based on the linear order on the set of discrete random variables. Properties of unconditional problem are established whose coefficients of the goal function or multiset's elements...

Full description

Saved in:
Bibliographic Details
Main Authors: Iemets, Oleg Oleksiiovych, Barbolina, Tetiana Mykolaivna
Format: Article
Language:Ukrainian
Published: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2016
Online Access:http://journal.iasa.kpi.ua/article/view/41735
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Authors study properties of linear optimization problems under probabilistic uncertainty while defining a problem based on the linear order on the set of discrete random variables. Properties of unconditional problem are established whose coefficients of the goal function or multiset's elements (but not both simultaneously) are discrete random variables. Based on properties of the solution of an unconditional problem with deterministic coefficients, we prove solution's properties for the problem with the goal function's coefficients as discrete random variables. The scheme of the branch and bound method for solving the linear optimization problems on permutations under probabilistic uncertainty is proposed as well as rules of branching and truncation of sets.