Метод згладженої автокореляційної функції для прогнозування варіації гетероскедастичних часових рядів

The paper proposes a new method for forecasting the variability for strong volatile heteroscedastic time series. An autoregressive model of an infinite order is considered as a model of time series. Parameters of the model are found as a solution of a Toeplitz system that uses correlation coefficien...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Zrazhevska, N. G.
Формат: Стаття
Мова:Ukrainian
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2015
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/54473
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:The paper proposes a new method for forecasting the variability for strong volatile heteroscedastic time series. An autoregressive model of an infinite order is considered as a model of time series. Parameters of the model are found as a solution of a Toeplitz system that uses correlation coefficients. The model of the autocorrelation function at every forecasting step is constructed by solving an optimization problem that takes into account the condition of strong dependence. The method has been tested on artificially generated and real time series. The autoregressive model parameters found with the method of maximum likelihood were used to compare the results of a selected autoregressive model. The results show a substantially high effectiveness of the proposed method in predicting of strong volatile heteroscedastic time series.