2025-02-23T21:25:02-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journaliasakpiua-article-71771%22&qt=morelikethis&rows=5
2025-02-23T21:25:02-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journaliasakpiua-article-71771%22&qt=morelikethis&rows=5
2025-02-23T21:25:02-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T21:25:02-05:00 DEBUG: Deserialized SOLR response

Визначення величини ризику VaR на основі оцінок параметрів моделі стохастичної волатильності

To describe the dynamics of conditional variance the stochastic volatility model is proposed the structure of which reflects actual changes of variance for financial hetero-scedastic processes. The stochastic volatility model parameters estimates are computed with the Markov chain Monte Carlo techni...

Full description

Saved in:
Bibliographic Details
Main Authors: Bidyuk, P. I., Konovaliuk, M. M.
Format: Article
Language:Ukrainian
Published: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2012
Online Access:http://journal.iasa.kpi.ua/article/view/71771
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To describe the dynamics of conditional variance the stochastic volatility model is proposed the structure of which reflects actual changes of variance for financial hetero-scedastic processes. The stochastic volatility model parameters estimates are computed with the Markov chain Monte Carlo technique using Open BUGS environment. To reduce the computation time an appropriate model specification was proposed. The estimates of the conditional variance, computed by the Monte Carlo method, were used for forecasting the value of possible losses VaR for selected financial stock processes represented by statistical data. The quality of forecasts is quite acceptable for decision making in stock trading.