Визначення величини ризику VaR на основі оцінок параметрів моделі стохастичної волатильності

To describe the dynamics of conditional variance the stochastic volatility model is proposed the structure of which reflects actual changes of variance for financial hetero-scedastic processes. The stochastic volatility model parameters estimates are computed with the Markov chain Monte Carlo techni...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Bidyuk, P. I., Konovaliuk, M. M.
Формат: Стаття
Мова:Українська
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2012
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/71771
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:To describe the dynamics of conditional variance the stochastic volatility model is proposed the structure of which reflects actual changes of variance for financial hetero-scedastic processes. The stochastic volatility model parameters estimates are computed with the Markov chain Monte Carlo technique using Open BUGS environment. To reduce the computation time an appropriate model specification was proposed. The estimates of the conditional variance, computed by the Monte Carlo method, were used for forecasting the value of possible losses VaR for selected financial stock processes represented by statistical data. The quality of forecasts is quite acceptable for decision making in stock trading.