Locally nilpotent Lie algebras of derivations of integral domains

Let K be a field of characteristic zero and A an integral domain over K. The Lie algebra DerKA of all K-derivations of A carries very important information about the algebra A. This Lie algebra is embedded into the Lie algebra RDerKA$\subseteq$DerKR, where R=Frac(A) is the fraction field of A. The r...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Petravchuk, A. P.; Київський національний університет ім. Тараса Шевченка, Київ, Shevchyk, O. M.; Київський національний університет ім. Тараса Шевченка, Київ, Sysak, K. Ya.; Київський національний університет ім. Тараса Шевченка, Київ
Format: Article
Language:English
Published: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2018
Subjects:
Online Access:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/2457
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Prykladni Problemy Mekhaniky i Matematyky

Institution

Prykladni Problemy Mekhaniky i Matematyky
Description
Summary:Let K be a field of characteristic zero and A an integral domain over K. The Lie algebra DerKA of all K-derivations of A carries very important information about the algebra A. This Lie algebra is embedded into the Lie algebra RDerKA$\subseteq$DerKR, where R=Frac(A) is the fraction field of A. The rank rkRL of a subalgebra L of RDerKA is defined as dimension dimRRL. We prove that every locally nilpotent subalgebra L of RDerKA with rkRL=n has a series of ideals 0=L0⊂L1⊂L2…⊂Ln=L such that rkRLi=i and all the quotient Lie algebras Li+1⁄Li, i=0,…,n-1, are abelian. We also describe all maximal (with respect to inclusion) locally nilpotent subalgebras L of the Lie algebra RDerKA with rkRL=3. Cite as: Petravchuk A. P., Shevchyk O. M., Sysak K. Ya. Locally nilpotent Lie algebras of deri­vations of integral domains // Appl. Probl. Mech. Math. – 2017. – No. 15. – С. 7–15.