2-добрі абелеві і дуо-кільця з умовами стабільного рангу
We investigate a duo ring of almost unit stable range 1 as a generalization of a ring of unit stable range 1. We prove that a duo ring of almost unit stable range 1 with nonzero Jacobson radical is a ring of unit stable range 1 and is a 2-good ring. We introduce the notice of almost 2-good ring and...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
| Теми: | |
| Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/2458 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i Matematyky| Резюме: | We investigate a duo ring of almost unit stable range 1 as a generalization of a ring of unit stable range 1. We prove that a duo ring of almost unit stable range 1 with nonzero Jacobson radical is a ring of unit stable range 1 and is a 2-good ring. We introduce the notice of almost 2-good ring and show that an adequate right duo domain is almost 2-good ring. Cite as: Bilous A. M., Gatalevych A. I. 2-good abelian and duo rings with conditions of a stable range // Appl. Probl. Mech. Math. – 2017. – No. 15. – С. 16–20. [In Ukrainian] |
|---|