Об одном свойстве модулярных представлений диэдральных 2-групп
We prove that in the case of an algebraically closed field of characteristic 2 there exist infinitely many dimensions in each of which the dihedral 2-group of order s=8,16 has infinitely many faithful indecomposable pairwise non-equivalent matrix representations of non-constant rank. Cite as: Lytvyn...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
| Schlagworte: | |
| Online Zugang: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/2461 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Institution
Prykladni Problemy Mekhaniky i Matematyky| Zusammenfassung: | We prove that in the case of an algebraically closed field of characteristic 2 there exist infinitely many dimensions in each of which the dihedral 2-group of order s=8,16 has infinitely many faithful indecomposable pairwise non-equivalent matrix representations of non-constant rank. Cite as: Lytvynchuk I. V. On one property of modular representations of the dihedral 2-groups // Appl. Probl. Mech. Math. – 2017. – No. 15. – С. 24–28. [In Russian] |
|---|