Задача стаціонарної теплопровідності для біматеріалу за теплоізоляції у паралельній до міжфазної поверхні круговій області

The Green's functions for stationary heat conduction problem for a piecewise-homogenous body formed by two ideally contacting half-spaces with heat-proof disk inclusion parallel to its boundary in one of them are constructed. In this case, the harmonic potential of the double layer, whose densi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Андрійчук, Р. М.; Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів
Формат: Стаття
Мова:Ukrainian
Опубліковано: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2018
Теми:
Онлайн доступ:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/2464
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Prykladni Problemy Mekhaniky i Matematyky

Репозитарії

Prykladni Problemy Mekhaniky i Matematyky
Опис
Резюме:The Green's functions for stationary heat conduction problem for a piecewise-homogenous body formed by two ideally contacting half-spaces with heat-proof disk inclusion parallel to its boundary in one of them are constructed. In this case, the harmonic potential of the double layer, whose density is thermal dipoles, is used. A two-dimensional hypersingular integral equation is derived to determine the density of dipoles through the heat flow of a given temperature field. In the axisymmetric case, the distribution of temperature on the axis of symmetry of the inclusion and its jumps on inclusion for different ratios of the heat conduction coefficients of the half-spaces and the distance of the inclusion to the materials boundary are investigated. Cite as: Andriychuk R. M. Stationary heat conduction problem for a bimaterial at thermal insulation in a circular domain parallel to bimaterial interface // Appl. Probl. Mech. Math. – 2017. – No. 15. – С. 50–54. [In Ukrainian]