Задача стаціонарної теплопровідності для біматеріалу за теплоізоляції у паралельній до міжфазної поверхні круговій області
The Green's functions for stationary heat conduction problem for a piecewise-homogenous body formed by two ideally contacting half-spaces with heat-proof disk inclusion parallel to its boundary in one of them are constructed. In this case, the harmonic potential of the double layer, whose densi...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
| Schlagworte: | |
| Online Zugang: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/2464 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Institution
Prykladni Problemy Mekhaniky i Matematyky| Zusammenfassung: | The Green's functions for stationary heat conduction problem for a piecewise-homogenous body formed by two ideally contacting half-spaces with heat-proof disk inclusion parallel to its boundary in one of them are constructed. In this case, the harmonic potential of the double layer, whose density is thermal dipoles, is used. A two-dimensional hypersingular integral equation is derived to determine the density of dipoles through the heat flow of a given temperature field. In the axisymmetric case, the distribution of temperature on the axis of symmetry of the inclusion and its jumps on inclusion for different ratios of the heat conduction coefficients of the half-spaces and the distance of the inclusion to the materials boundary are investigated. Cite as: Andriychuk R. M. Stationary heat conduction problem for a bimaterial at thermal insulation in a circular domain parallel to bimaterial interface // Appl. Probl. Mech. Math. – 2017. – No. 15. – С. 50–54. [In Ukrainian] |
|---|