Двовимірна задача термопружності для півпростору з жорстко, гладко або гнучко закріпленою межею за тепловиділення у паралельній до неї стрічковій області
Under the influence of a heat source, the Green's functions of the problems of stationary heat conductivity and thermoelasticity are constructed for plane deformation of a semi-infinite body with a rigidly, smoothly or flexibly clamped boundary on which zero temperature is maintained. In this c...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/2477 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i MatematykyРезюме: | Under the influence of a heat source, the Green's functions of the problems of stationary heat conductivity and thermoelasticity are constructed for plane deformation of a semi-infinite body with a rigidly, smoothly or flexibly clamped boundary on which zero temperature is maintained. In this case, the logarithmic potential of a simple layer is used to solve the heat conduction problem, and the thermoelastic displacement potential in an infinite body with a heat source and sink that are mirror-like relative to the boundary of the half-space is used to solve the thermoelasticity problem. To satisfy the boundary conditions on the boundary of the body the Boussinesq’s functions are constructed. Expressions are given for the temperature, displacements and stresses by means of which the thermoelastic state of the half-space is determined upon heat release in a parallel to the boundary ribbon-like domain under given in it the heat sources of constant intensity. |
---|