Двовимірна задача термопружності для півпростору з жорстко, гладко або гнучко закріпленою межею за тепловиділення у паралельній до неї стрічковій області

Under the influence of a heat source, the Green's functions of the problems of stationary heat conductivity and thermoelasticity are constructed for plane deformation of a semi-infinite body with a rigidly, smoothly or flexibly clamped boundary on which zero temperature is maintained. In this c...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Івасько, Н. М.; Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів
Формат: Стаття
Мова:Ukrainian
Опубліковано: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2018
Онлайн доступ:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/2477
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Prykladni Problemy Mekhaniky i Matematyky

Репозитарії

Prykladni Problemy Mekhaniky i Matematyky
Опис
Резюме:Under the influence of a heat source, the Green's functions of the problems of stationary heat conductivity and thermoelasticity are constructed for plane deformation of a semi-infinite body with a rigidly, smoothly or flexibly clamped boundary on which zero temperature is maintained. In this case, the logarithmic potential of a simple layer is used to solve the heat conduction problem, and the thermoelastic displacement potential in an infinite body with a heat source and sink that are mirror-like relative to the boundary of the half-space is used to solve the thermoelasticity problem. To satisfy the boundary conditions on the boundary of the body the Boussinesq’s functions are constructed. Expressions are given for the temperature, displacements and stresses by means of which the thermoelastic state of the half-space is determined upon heat release in a parallel to the boundary ribbon-like domain under given in it the heat sources of constant intensity.