Скінченно-елементне розв’язування задач теорії оболонок, податливих до зсувів та стиснення
For the convenience of applying numerical methods, in particular the finite element method, to solving tasks of the theory of thin shells amenable to shear and compression, all key equations for the research the stress-strain state within the considered shells under static and dynamic loading, detec...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
Теми: | |
Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2018.16.98-106 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i MatematykyРезюме: | For the convenience of applying numerical methods, in particular the finite element method, to solving tasks of the theory of thin shells amenable to shear and compression, all key equations for the research the stress-strain state within the considered shells under static and dynamic loading, detecting proper frequencies of free vibrations, and the initial post-critical state, have been noted in the matrix form. Numerical schemes for solving the problems of statics and dynamics, stability and vibrations of flexible shells amenable to shear and compression have been constructed. Cite as: I. Ye. Bernakevych, P. P. Vahin, I. Ya. Koziy, “Finite-element solution of the problems of the theory of shells amenable to shear and compression,” Prykl. Probl. Mekh. Mat., Issue 16, 98–106 (2018) (in Ukrainian), http://doi.org/10.15407/apmm2018.16.98-106 |
---|