Задача Діріхле–Неймана для рівнянь із частинними похідними високого порядку зі сталими коефіцієнтами
In the region, which is a Cartesian product of a segment on the p-dimensional torus, the boundary-value problem with Dirichlet – Neumann conditions in the chosen variable and the conditions 2π-periodicity in the other coordinates for high-order linear partial differential equations with constant coe...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
Теми: | |
Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2018.16.147-153 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i MatematykyРезюме: | In the region, which is a Cartesian product of a segment on the p-dimensional torus, the boundary-value problem with Dirichlet – Neumann conditions in the chosen variable and the conditions 2π-periodicity in the other coordinates for high-order linear partial differential equations with constant coefficients has been investigated. The conditions of unique solvability for the problem have been established and its solution in the form of the series in the system of orthogonal functions has been constructed. It is established that the solvability of the problem is not related to the problem of small denominators. Cite as: S. M. Repetylo, M. M. Symotiuk, “Dirichlet–Neumann problem for high-order partial differential equations with constant coefficients,” Prykl. Probl. Mekh. Mat., Issue 16, 147–153 (2018) (in Ukrainian), http://doi.org/10.15407/apmm2018.16.147-153 |
---|