2025-02-22T17:17:39-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journalsiapmmlvivua-article-2860%22&qt=morelikethis&rows=5
2025-02-22T17:17:39-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journalsiapmmlvivua-article-2860%22&qt=morelikethis&rows=5
2025-02-22T17:17:39-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:17:39-05:00 DEBUG: Deserialized SOLR response
Задача Діріхле–Неймана для рівнянь із частинними похідними високого порядку зі сталими коефіцієнтами
In the region, which is a Cartesian product of a segment on the p-dimensional torus, the boundary-value problem with Dirichlet – Neumann conditions in the chosen variable and the conditions 2π-periodicity in the other coordinates for high-order linear partial differential equations with constant coe...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | Ukrainian |
Published: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
Subjects: | |
Online Access: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2018.16.147-153 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the region, which is a Cartesian product of a segment on the p-dimensional torus, the boundary-value problem with Dirichlet – Neumann conditions in the chosen variable and the conditions 2π-periodicity in the other coordinates for high-order linear partial differential equations with constant coefficients has been investigated. The conditions of unique solvability for the problem have been established and its solution in the form of the series in the system of orthogonal functions has been constructed. It is established that the solvability of the problem is not related to the problem of small denominators. Cite as: S. M. Repetylo, M. M. Symotiuk, “Dirichlet–Neumann problem for high-order partial differential equations with constant coefficients,” Prykl. Probl. Mekh. Mat., Issue 16, 147–153 (2018) (in Ukrainian), http://doi.org/10.15407/apmm2018.16.147-153 |
---|