Застосування методу W.K.B. до розрахунку діелектричних втрат у пористому зволоженому середовищі за мікрохвильового опромінення
Розглянуто одновимірну задачу про проходження плоскої монохроматичної електромагнітної хвилі мікрохвильового діапазону частот через неоднорідний шар, електрофізичні властивості якого є слабозмінні функції координати. На основі підходів методу W.K.B. (Wentzel–Kramers–Brillouin approximation) отрим...
Збережено в:
| Дата: | 2013 |
|---|---|
| Автори: | Голубець, Т. В., Терлецький, Р. Ф. |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2013
|
| Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/293 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i MatematykyСхожі ресурси
-
Дослідження впливу мікрохвильового опромінення на деякі гідробіонти
за авторством: Григорьева, О.О., та інші
Опубліковано: (2004) -
WKB Approximation in Noncommutative Gravity
за авторством: Buric, M., та інші
Опубліковано: (2007) -
ПЛІВКОВЕ КИПІННЯ РІДИНИ БІЛЯ ВЕРТИКАЛЬНОЇ ПЛАСТИНИ В ПОРИСТОМУ СЕРЕДОВИЩІ
за авторством: Avramenko, A.A., та інші
Опубліковано: (2022) -
ОПТИМАЛЬНЕ КЕРУВАННЯ ІНТЕНСИВНІСТЮ ТОЧКОВИХ ДЖЕРЕЛ ВОДИ В НЕНАСИЧЕНОМУ ПОРИСТОМУ СЕРЕДОВИЩІ
за авторством: Lyashko, S.L., та інші
Опубліковано: (2025) -
Математичне моделювання процесу аеробного очищення стічних вод в пористому середовищі
за авторством: Бомба, А.Я., та інші
Опубліковано: (2011)