Задача Діріхле–Неймана для системи слабко нелінійних гіперболічних рівнянь високого порядку зі сталими коефіцієнтами
In the region, which is a Cartesian product of the interval on the unit circle, the boundary value problem with Dirichlet–Neumann conditions in the time variable and the conditions of 2π-periodicity in the spatial coordinate for the system of weakly nonlinear hyperbolic equations of high order with...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2019
|
Теми: | |
Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2019.17.105-112 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i MatematykyРезюме: | In the region, which is a Cartesian product of the interval on the unit circle, the boundary value problem with Dirichlet–Neumann conditions in the time variable and the conditions of 2π-periodicity in the spatial coordinate for the system of weakly nonlinear hyperbolic equations of high order with constant coefficients has been investigated. The Banach–Caccioppoli fixed-point theorem has been applied and the conditions for unique solvability for the problem in Sobolev spaces have been established. Cite as: S. M. Repetylo, M. M. Symotiuk, “Dirichlet–Neumann problem for system of weakly nonlinear hyperbolic equations of high order with constant coefficients,” Prykl. Probl. Mekh. Mat., Issue 17, 105–112 (2019) (in Ukrainian), https://doi.org/10.15407/apmm2019.17.105-112 |
---|