Інтегральні рівняння тривимірної задачі теорії пружності для однорідного трансверсально ізотропного півпростору
A method for reducing the three-dimensional problem of the theory of elasticity for a homogeneous transversely isotropic half-space to key integral equations of the second kind for individual components of the stress tensor is proposed. Using the resolvent kernel method, we obtain explicit solutions...
Saved in:
| Date: | 2020 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2020
|
| Subjects: | |
| Online Access: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2020.18.83-92 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Prykladni Problemy Mekhaniky i Matematyky |
Institution
Prykladni Problemy Mekhaniky i Matematyky| Summary: | A method for reducing the three-dimensional problem of the theory of elasticity for a homogeneous transversely isotropic half-space to key integral equations of the second kind for individual components of the stress tensor is proposed. Using the resolvent kernel method, we obtain explicit solutions of these equations in the space of the double integral Fourier transform. The shape of the solution constructed in this way does not depend on the relationships between the elastic modules of the material, which allows, in particular, to ensure the attenuation of the components of the stress tensor at infinitely distant points of the half-space for various types of transversely isotropic materials. Cite as: Yu. V. Tokovyy, D. S. Boiko, “Integral equations of a three-dimensional elasticity problem for a homogeneous transversely isotropic half-space,” Prykl. Probl. Mekh. Mat., Issue 18, 83–92 (2020) (in Ukrainian), https://doi.org/10.15407/apmm2020.18.83-92 |
|---|