About ternary quasigroup quadratic identities of the small length

In this article, it has been proved that each quadratic identity of the lengths one, two, three is parastrophically primarily equivalent to at least one of the given identities. The identities of the length three have been analyzed in the class of universal loops, i.e., quasigroups in which every el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Sokhatsky, F. M.; Сохацький Ф. М.; Донецький національний університет ім. Василя Стуса, Вінниця, Tarasevych, A. V.; Тарасевич А. В.; Хмельницький національний університет, Хмельницький
Format: Artikel
Sprache:English
Veröffentlicht: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2020
Schlagworte:
Online Zugang:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2020.18.150-161
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Prykladni Problemy Mekhaniky i Matematyky

Institution

Prykladni Problemy Mekhaniky i Matematyky
Beschreibung
Zusammenfassung:In this article, it has been proved that each quadratic identity of the lengths one, two, three is parastrophically primarily equivalent to at least one of the given identities. The identities of the length three have been analyzed in the class of universal loops, i.e., quasigroups in which every element is neutral. It has been proved that there are five non-equivalent identities. The first identity defines the class of all universal loops, the second one defines the variety of the boolean skeins and the other three identities define three parastrophic varieties whose operations are repetition-free compositions of binary commutative middle loops.  Cite as: F. M. Sokhatsky, A. V. Tarasevych, “On ternary quasigroup quadratic identities of the small length,” Prykl. Probl. Mekh. Mat., Issue 18, 150–161 (2020), https://doi.org/10.15407/apmm2020.18.150-161