Згин функціонально-градієнтної пластини за нестаціонарного нагрівання і початкового напруження
The thermoelastic behavior of a rectangular isotropic functional-gradient plate, which, being initially in a plane stress state, is unsteadily heated by the medium due to convective heat exchange, has been investigated. For this, the five-modal mathematical model of the shear theory of thermoelastic...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2023
|
| Теми: | |
| Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2023.21.77-84 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i Matematyky| Резюме: | The thermoelastic behavior of a rectangular isotropic functional-gradient plate, which, being initially in a plane stress state, is unsteadily heated by the medium due to convective heat exchange, has been investigated. For this, the five-modal mathematical model of the shear theory of thermoelasticity and the two-dimensional equations of thermal conductivity of heterogeneous isotropic plates were used. Using the methods of Fourier and Laplace integral transformations, the solution of the non-stationary problem of thermal conductivity and the quasi-static problem of thermoelasticity for a finite hinged plate supported on the edges is found. Numerical results are given for a heterogeneous ceramic-metal composite. Cite as: U. V. Zhydyk, “Bending of the functional-gradient plate under non-stationary heating and initial stress,” Prykl. Probl. Mekh. Mat., Issue 21, 77–84 (2023) (in Ukrainian), https://doi.org/10.15407/apmm2023.21.77-84 |
|---|