Дослідження згину локально нагрітої ортотропної пластини шаруватої структури

Based on two-dimensional equations of heat conduction and equations of the shear theory of thermoelasticity, the bending of a rectangular orthotropic plate of a layered irregular structure under unsteady local heating by the environment was studied. Using the methods of integral Fourier and Laplace...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Zhydyk, U. V.; Національний університет «Львівська політехніка», Львів, Kohut, Z. O.; Національний університет «Львівська політехніка», Львів; Ченстоховський політехнічний ун-т, Ченстохова, Польща, Klapchuk, M. I.; Національний університет «Львівська політехніка», Львів
Формат: Стаття
Опубліковано: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2024
Теми:
Онлайн доступ:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2024.22.53-60
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Prykladni Problemy Mekhaniky i Matematyky

Репозитарії

Prykladni Problemy Mekhaniky i Matematyky
Опис
Резюме:Based on two-dimensional equations of heat conduction and equations of the shear theory of thermoelasticity, the bending of a rectangular orthotropic plate of a layered irregular structure under unsteady local heating by the environment was studied. Using the methods of integral Fourier and Laplace transforms, a solution of the unsteady problem of heat conduction and the quasi-static problem of thermoelasticity for a plate hinged at the edges were found. Numerical results are given for three-layer plates of symmetric and asymmetric structure. Cite as: U. V. Zhydyk, Z. O. Kohut, M. I. Klapchuk, “Study of bending of a locally heated orthotropic plate of a layered structure,” Prykl. Probl. Mekh. Mat., Issue 22, 53–60 (2024) (in Ukrainian), https://doi.org/10.15407/apmm2024.22.53-60