Дослідження згину локально нагрітої ортотропної пластини шаруватої структури
Based on two-dimensional equations of heat conduction and equations of the shear theory of thermoelasticity, the bending of a rectangular orthotropic plate of a layered irregular structure under unsteady local heating by the environment was studied. Using the methods of integral Fourier and Laplace...
Збережено в:
| Дата: | 2024 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2024
|
| Теми: | |
| Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2024.22.53-60 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i Matematyky| Резюме: | Based on two-dimensional equations of heat conduction and equations of the shear theory of thermoelasticity, the bending of a rectangular orthotropic plate of a layered irregular structure under unsteady local heating by the environment was studied. Using the methods of integral Fourier and Laplace transforms, a solution of the unsteady problem of heat conduction and the quasi-static problem of thermoelasticity for a plate hinged at the edges were found. Numerical results are given for three-layer plates of symmetric and asymmetric structure. Cite as: U. V. Zhydyk, Z. O. Kohut, M. I. Klapchuk, “Study of bending of a locally heated orthotropic plate of a layered structure,” Prykl. Probl. Mekh. Mat., Issue 22, 53–60 (2024) (in Ukrainian), https://doi.org/10.15407/apmm2024.22.53-60 |
|---|