Канонічні та матричні задання квазігруп четвертого порядку

A quasigroup is called a loop if it has a neutral element. When it is denoted by 0, it is called a 0-loop. There are 4 0-loops of the fourth order, one of which is a Klein group, the other three are isomorphic to a cyclic group. The obtained results are: 1) every quasigroup of the fourth order has a...

Full description

Saved in:
Bibliographic Details
Date:2024
Main Authors: Sokhatsky, F. M.; Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів, Krainichuk, H. V.; Вінницький національний технічний університет, Вінниця, Luzhetsky, V. A.; Вінницький національний технічний університет, Вінниця
Format: Article
Published: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2024
Subjects:
Online Access:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2024.22.95-105
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Prykladni Problemy Mekhaniky i Matematyky

Institution

Prykladni Problemy Mekhaniky i Matematyky
Description
Summary:A quasigroup is called a loop if it has a neutral element. When it is denoted by 0, it is called a 0-loop. There are 4 0-loops of the fourth order, one of which is a Klein group, the other three are isomorphic to a cyclic group. The obtained results are: 1) every quasigroup of the fourth order has a unique canonical decomposition over exactly one of these four 0-loops; 2) every quasigroup of the fourth order has a unique matrix canonical decomposition over either a cyclic group or a Klein group; 3) the corresponding formulas and examples for their use are given. Cite as: F. M. Sokhatsky, H. V. Krainichuk, V. A. Luzhetsky, “Canonical and matrix figuration of quasigroups of the fourth order,” Prykl. Probl. Mekh. Mat., Issue 22, 95–105 (2024) (in Ukrainian), https://doi.org/10.15407/apmm2024.22.95-105