Розв’язання тривимірної крайової задачі теорії пружності для тіла обертання
Розглянуто навантажене тіло обертання, тривимірний напружено-деформований стан якого розділено на основний і самозрівноважений. Самозрівноважений подано у вигляді ряду за власними функціями. За допомогою розкладу в ряди Фур’є тривимірну крайову задачу спрощено до дослідження незв’язаних між соб...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| 1. Verfasser: | Ревенко, В. П. |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2015
|
| Online Zugang: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/996 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Institution
Prykladni Problemy Mekhaniky i MatematykyÄhnliche Einträge
-
Зведення тривимірної задачі теорії згину товстих пластин до розв’язання двох двовимірних задач
von: Ревенко, В.П.
Veröffentlicht: (2015) -
Інтегральні рівняння тривимірної задачі теорії пружності для однорідного трансверсально ізотропного півпростору
von: Tokovyy, Yu. V.; Токовий Ю. В.; Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів, et al.
Veröffentlicht: (2020) -
Розв'язання тривимірної задачі комп'ютерної томографії з використанням невеликої кількості томограм
von: Литвин, О.М., et al.
Veröffentlicht: (2011) -
Безпосереднє інтегрування ключових рівнянь тривимірної задачі теорії пружності для трансверсально-ізотропного півпростору
von: Tokovyy, Yu. V.; Токовий Ю. В.; Ін-т прикл. проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів, et al.
Veröffentlicht: (2019) -
Про розв'язання задачі Алексідзе
von: Дубовенко, Ю.I.
Veröffentlicht: (2010)