Application of neural networks modeling for interpretation of acoustic logging traces

The neural networks are proposed for application as a method for automatic P- and S-waves onset time-picking on sonic logging. The neural network models of acoustic emission preceding phase onset are trained and used to discriminate noise and desired signal, the last one being packets of  longitudin...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Lazarenko, M., Gerasimenko, O.
Формат: Стаття
Мова:rus
Опубліковано: Subbotin Institute of Geophysics of the NAS of Ukraine 2015
Теми:
Онлайн доступ:https://journals.uran.ua/geofizicheskiy/article/view/111160
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Geofizicheskiy Zhurnal

Репозитарії

Geofizicheskiy Zhurnal
id journalsuranua-geofizicheskiy-article-111160
record_format ojs
spelling journalsuranua-geofizicheskiy-article-1111602020-10-07T11:38:43Z Application of neural networks modeling for interpretation of acoustic logging traces Lazarenko, M. Gerasimenko, O. neural network modelling acoustic logging wave arrival time adaptive threshold level longitudinal and transversal waves The neural networks are proposed for application as a method for automatic P- and S-waves onset time-picking on sonic logging. The neural network models of acoustic emission preceding phase onset are trained and used to discriminate noise and desired signal, the last one being packets of  longitudinal  and transversal waves. The given algorithm is easily adapted to existing systems and is able to provide both processing of logging tracks in online regime and high productivity of archive materials interpretation. Subbotin Institute of Geophysics of the NAS of Ukraine 2015-10-01 Article Article application/pdf https://journals.uran.ua/geofizicheskiy/article/view/111160 10.24028/gzh.0203-3100.v37i5.2015.111160 Geofizicheskiy Zhurnal; Vol. 37 No. 5 (2015); 162-167 Геофизический журнал; Том 37 № 5 (2015); 162-167 Геофізичний журнал; Том 37 № 5 (2015); 162-167 2524-1052 0203-3100 rus https://journals.uran.ua/geofizicheskiy/article/view/111160/106025 Copyright (c) 2020 Geofizicheskiy Zhurnal https://creativecommons.org/licenses/by/4.0
institution Geofizicheskiy Zhurnal
collection OJS
language rus
topic neural network modelling
acoustic logging
wave arrival time
adaptive threshold level
longitudinal and transversal waves
spellingShingle neural network modelling
acoustic logging
wave arrival time
adaptive threshold level
longitudinal and transversal waves
Lazarenko, M.
Gerasimenko, O.
Application of neural networks modeling for interpretation of acoustic logging traces
topic_facet neural network modelling
acoustic logging
wave arrival time
adaptive threshold level
longitudinal and transversal waves
format Article
author Lazarenko, M.
Gerasimenko, O.
author_facet Lazarenko, M.
Gerasimenko, O.
author_sort Lazarenko, M.
title Application of neural networks modeling for interpretation of acoustic logging traces
title_short Application of neural networks modeling for interpretation of acoustic logging traces
title_full Application of neural networks modeling for interpretation of acoustic logging traces
title_fullStr Application of neural networks modeling for interpretation of acoustic logging traces
title_full_unstemmed Application of neural networks modeling for interpretation of acoustic logging traces
title_sort application of neural networks modeling for interpretation of acoustic logging traces
description The neural networks are proposed for application as a method for automatic P- and S-waves onset time-picking on sonic logging. The neural network models of acoustic emission preceding phase onset are trained and used to discriminate noise and desired signal, the last one being packets of  longitudinal  and transversal waves. The given algorithm is easily adapted to existing systems and is able to provide both processing of logging tracks in online regime and high productivity of archive materials interpretation.
publisher Subbotin Institute of Geophysics of the NAS of Ukraine
publishDate 2015
url https://journals.uran.ua/geofizicheskiy/article/view/111160
work_keys_str_mv AT lazarenkom applicationofneuralnetworksmodelingforinterpretationofacousticloggingtraces
AT gerasimenkoo applicationofneuralnetworksmodelingforinterpretationofacousticloggingtraces
first_indexed 2024-04-21T19:40:07Z
last_indexed 2024-04-21T19:40:07Z
_version_ 1796974478335410176