Neural network models of local time curves of seismic waves

To generalize the problem of the travel time assessment the artificial neuron networks are used. This approach makes possible to build the nonlinear model of seismic wave phase propagation as a function of several arguments: source depth, magnitude, back azimuth and epicenter distance. The 3D travel...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Lazarenko, M. A., Gerasimenko, O. A., Ostapchuk, N. N.
Формат: Стаття
Мова:Російська
Опубліковано: S. Subbotin Institute of Geophysics of the NAS of Ukraine 2011
Онлайн доступ:https://journals.uran.ua/geofizicheskiy/article/view/116802
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Geofizicheskiy Zhurnal

Репозитарії

Geofizicheskiy Zhurnal
_version_ 1856543305262694400
author Lazarenko, M. A.
Gerasimenko, O. A.
Ostapchuk, N. N.
author_facet Lazarenko, M. A.
Gerasimenko, O. A.
Ostapchuk, N. N.
author_sort Lazarenko, M. A.
baseUrl_str
collection OJS
datestamp_date 2020-10-07T11:02:57Z
description To generalize the problem of the travel time assessment the artificial neuron networks are used. This approach makes possible to build the nonlinear model of seismic wave phase propagation as a function of several arguments: source depth, magnitude, back azimuth and epicenter distance. The 3D travel time curves for three Ukrainian seismic stations are presented together with the deviation from global travel time data.
first_indexed 2025-07-17T11:08:00Z
format Article
id journalsuranua-geofizicheskiy-article-116802
institution Geofizicheskiy Zhurnal
language Russian
last_indexed 2025-07-17T11:08:00Z
publishDate 2011
publisher S. Subbotin Institute of Geophysics of the NAS of Ukraine
record_format ojs
spelling journalsuranua-geofizicheskiy-article-1168022020-10-07T11:02:57Z Neural network models of local time curves of seismic waves Lazarenko, M. A. Gerasimenko, O. A. Ostapchuk, N. N. To generalize the problem of the travel time assessment the artificial neuron networks are used. This approach makes possible to build the nonlinear model of seismic wave phase propagation as a function of several arguments: source depth, magnitude, back azimuth and epicenter distance. The 3D travel time curves for three Ukrainian seismic stations are presented together with the deviation from global travel time data. S. Subbotin Institute of Geophysics of the NAS of Ukraine 2011-12-01 Article Article application/pdf https://journals.uran.ua/geofizicheskiy/article/view/116802 10.24028/gzh.0203-3100.v33i6.2011.116802 Geofizicheskiy Zhurnal; Vol. 33 No. 6 (2011); 157-160 Геофизический журнал; Том 33 № 6 (2011); 157-160 Геофізичний журнал; Том 33 № 6 (2011); 157-160 2524-1052 0203-3100 ru https://journals.uran.ua/geofizicheskiy/article/view/116802/110862 Copyright (c) 2020 Geofizicheskiy Zhurnal https://creativecommons.org/licenses/by/4.0
spellingShingle Lazarenko, M. A.
Gerasimenko, O. A.
Ostapchuk, N. N.
Neural network models of local time curves of seismic waves
title Neural network models of local time curves of seismic waves
title_full Neural network models of local time curves of seismic waves
title_fullStr Neural network models of local time curves of seismic waves
title_full_unstemmed Neural network models of local time curves of seismic waves
title_short Neural network models of local time curves of seismic waves
title_sort neural network models of local time curves of seismic waves
url https://journals.uran.ua/geofizicheskiy/article/view/116802
work_keys_str_mv AT lazarenkoma neuralnetworkmodelsoflocaltimecurvesofseismicwaves
AT gerasimenkooa neuralnetworkmodelsoflocaltimecurvesofseismicwaves
AT ostapchuknn neuralnetworkmodelsoflocaltimecurvesofseismicwaves