Automated water level monitoring system in open water
The article is devoted to the creation of automated systems for monitoring the level of water in open waters, intended primarily to control and prevent floods during natural phenomena. The existing at this time control systems are based on outdated principles and technical means and do not allow tim...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | rus |
Опубліковано: |
Subbotin Institute of Geophysics of the NAS of Ukraine
2019
|
Теми: | |
Онлайн доступ: | https://journals.uran.ua/geofizicheskiy/article/view/190080 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Geofizicheskiy Zhurnal |
Репозиторії
Geofizicheskiy ZhurnalРезюме: | The article is devoted to the creation of automated systems for monitoring the level of water in open waters, intended primarily to control and prevent floods during natural phenomena. The existing at this time control systems are based on outdated principles and technical means and do not allow timely assessment of the real flooding catastrophic danger.We have proposed new principles for building a semi-autonomous monitoring system for water basins based on modern achievements of high-level information systems using devices that allow obtaining an on-line accurate water level signal using laser methods, modern signal processing methods and data transmission systems over long distances. The system uses original scientific and technical solutions protected by patents.For an automated monitoring system with a view to its practical application on a large scale of territories, including those that cover border areas of neighboring states, specific practical data of hydrometeorological conditions over a long period of observations by the relevant emergency services of Ukraine and the Republic of Belarus from measuring stations (meteorological posts) have been used.Ultimately, the system allows transmitting from laser level gauges via cellular communication channels through measuring modules feed through Internet channels to the base station, followed by visualization and documentation of the water level measurements results, the dynamics of its change, and thus makes timely well-grounded management decisions to prevent flood disasters.It should be noted that the principles and technical solutions on which the system is based make it possible to use it for other purposes, in particular, as a geographic information system for monitoring fluctuations of the earth’s surface over large areas, for tracking the shear processes of mountain ranges, etc. |
---|