Recovery of potential using module values of its gradient. 2

The method of the recovery of the potential on the module of its gradient under conditionof the similarity of the potential to that given as the limit of the succession of the solations of the boundary problems of Neumann for the Laplace equation that define the disturbing potential proposed in the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2000
Автори: Chernyi, A. V., Yakimchik, A. I.
Формат: Стаття
Мова:Російська
Опубліковано: S. Subbotin Institute of Geophysics of the NAS of Ukraine 2000
Онлайн доступ:https://journals.uran.ua/geofizicheskiy/article/view/214576
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Geofizicheskiy Zhurnal

Репозитарії

Geofizicheskiy Zhurnal
_version_ 1856543456944455680
author Chernyi, A. V.
Yakimchik, A. I.
author_facet Chernyi, A. V.
Yakimchik, A. I.
author_sort Chernyi, A. V.
baseUrl_str
collection OJS
datestamp_date 2020-10-17T06:53:40Z
description The method of the recovery of the potential on the module of its gradient under conditionof the similarity of the potential to that given as the limit of the succession of the solations of the boundary problems of Neumann for the Laplace equation that define the disturbing potential proposed in the first part is substantiated. The succession of the disturbing potential is generated by the succession of the solutions of linear integral equations of the second kind with compact operators having large cores. A correct solubility of the given kind of equations is established and the convergence of the succession of the solution of the Neumann's problems to the function unambiguously generating the desired potential is proven.
first_indexed 2025-07-17T11:11:35Z
format Article
id journalsuranua-geofizicheskiy-article-214576
institution Geofizicheskiy Zhurnal
language Russian
last_indexed 2025-07-17T11:11:35Z
publishDate 2000
publisher S. Subbotin Institute of Geophysics of the NAS of Ukraine
record_format ojs
spelling journalsuranua-geofizicheskiy-article-2145762020-10-17T06:53:40Z Recovery of potential using module values of its gradient. 2 Chernyi, A. V. Yakimchik, A. I. The method of the recovery of the potential on the module of its gradient under conditionof the similarity of the potential to that given as the limit of the succession of the solations of the boundary problems of Neumann for the Laplace equation that define the disturbing potential proposed in the first part is substantiated. The succession of the disturbing potential is generated by the succession of the solutions of linear integral equations of the second kind with compact operators having large cores. A correct solubility of the given kind of equations is established and the convergence of the succession of the solution of the Neumann's problems to the function unambiguously generating the desired potential is proven. S. Subbotin Institute of Geophysics of the NAS of Ukraine 2000-12-01 Article Article application/pdf https://journals.uran.ua/geofizicheskiy/article/view/214576 10.24028/gzh.0203-3100.v22i6.2000.214576 Geofizicheskiy Zhurnal; Vol. 22 No. 6 (2000); 166-183 Геофизический журнал; Том 22 № 6 (2000); 166-183 Геофізичний журнал; Том 22 № 6 (2000); 166-183 2524-1052 0203-3100 ru https://journals.uran.ua/geofizicheskiy/article/view/214576/214694 Copyright (c) 2020 Geofizicheskiy Zhurnal https://creativecommons.org/licenses/by/4.0
spellingShingle Chernyi, A. V.
Yakimchik, A. I.
Recovery of potential using module values of its gradient. 2
title Recovery of potential using module values of its gradient. 2
title_full Recovery of potential using module values of its gradient. 2
title_fullStr Recovery of potential using module values of its gradient. 2
title_full_unstemmed Recovery of potential using module values of its gradient. 2
title_short Recovery of potential using module values of its gradient. 2
title_sort recovery of potential using module values of its gradient. 2
url https://journals.uran.ua/geofizicheskiy/article/view/214576
work_keys_str_mv AT chernyiav recoveryofpotentialusingmodulevaluesofitsgradient2
AT yakimchikai recoveryofpotentialusingmodulevaluesofitsgradient2