Modernization adaptive piecewise linear approximation of difficult-to-compute functions
The solution of many theoretical and applied problems requires that some functional dependencies be substituted into others, which are more convenient for the implementation of a specific mathematical problem. At the same time, information about the character of the original function can be insuffic...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English Russian |
Опубліковано: |
Journal of Mechanical Engineering
2018
|
Теми: | |
Онлайн доступ: | https://journals.uran.ua/jme/article/view/135436 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Journal of Mechanical Engineering |
Репозитарії
Journal of Mechanical EngineeringРезюме: | The solution of many theoretical and applied problems requires that some functional dependencies be substituted into others, which are more convenient for the implementation of a specific mathematical problem. At the same time, information about the character of the original function can be insufficient, and the function itself can be considered to be difficult to compute. The accuracy of such an approximation depends on the methods used, the character of the original function, as well as the number and choice of grid points. The easiest way of building such an approximation is doing it on a uniform grid of points, which does not always provide an acceptable result. The purpose of this paper is to develop effective adaptive methods of approximating functions for the problems aimed at searching for the lengths of curves and calculating integrals under conditions of limited information about the character of the original function and the presence of its derivatives. An adaptive approach to the approximation of a wide class of one-dimensional functions is proposed in the paper. For this approximation a piecewise linear approximation with a simple mechanism of exponential adaptive feedback step process control is used. The possibilities of this approach are considered, using the problems of calculating the lengths of curves and values of definite integrals. The specifics of the application of the suggested approach are detailed for each case. The approach does not require an initial allocation of grid points. The method ensures the required accuracy in automatic mode. The result is realized in a single pass without any preliminary transformations. The reliability of the obtained results is confirmed by solving the known test examples. The results of calculating a number of definite integrals with different nature of integrand are presented. The calculation results by the proposed method are compared with the data obtained by the usual trapezoid method. A high efficiency of the proposed approach is established. The proposed method opens the way for creating effective means for solving numerical integration and differentiation problems, as well as integral and differential equations and so on. |
---|