Analytical method of profiling axial-radial compressor impellers

A new analytical method for constructing axial-radial compressor impellers with compound lean leading and trailing edges is proposed allowing us to describe a wide class of flow paths based on a limited (small) number of parameterized quantities. With the aid of this method there has been designed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Rusanov, A. V., Rusanov, R. A., Pashchenko, N. V., Chuhai, M. O.
Format: Artikel
Sprache:English
Ukrainian
Veröffentlicht: Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України 2019
Schlagworte:
Online Zugang:https://journals.uran.ua/jme/article/view/153546
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mechanical Engineering

Institution

Journal of Mechanical Engineering
Beschreibung
Zusammenfassung:A new analytical method for constructing axial-radial compressor impellers with compound lean leading and trailing edges is proposed allowing us to describe a wide class of flow paths based on a limited (small) number of parameterized quantities. With the aid of this method there has been designed a new flow path with a typical axial radial impeller for turbo-expander aggregate compressors with flow coefficients in the range from 0.03 to 0.06. To test the method, a numerical study of spatial viscous flows was carried out in the existing and new modifications of the flow path for the typical axial-radial compressor of a low-temperature turbo-expander aggregate. To do that, the IPMFlow software package was used, which is the development of the FlowER and FlowER-U programs. The computational grid consisted of over 600 thousand cells. The developed impeller has a substantially spatial shape, with the leading edges having compound circumferential lean.  The new design is shown to have a more favorable flow structure in which there are almost no flow separations. This is ensured due to the spatial shape of the new impeller, including compound radial lean of the leading edges. This form contributes to "pressing" the flow to the peripheral contour in the region of the flow path turn from the axial direction to the radial one, consequently preventing the occurrence of separable vortices. Due to the absence of separable formations in the nominal mode, and thanks to relatively insignificant separations in the off-design mode, there is provided a high level of aerodynamic perfection (high efficiency) of a new typical compressor in the whole range of turbo-detander aggregate operating modes. Thus, in the nominal mode, the compressor efficiency is 6% higher as compared with that of the prototype. The compressor impeller has been introduced in the turbo-detander aggregates for complex gas processing facilities at the extractive enterprises of gas-condensate deposits of Uzbekistan.