Modeling heat and mass exchange processes in metal-hydride installations

Hydrogen as an environmentally friendly energy carrier is increasingly used in various sectors of the economy of industrialized countries, primarily to improve the environmental situation. Regardless of the field of application, metal hydride installations are energy conversion facilities, which is...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Journal of Mechanical Engineering
Дата:2019
Автори: Chorna, N. A., Hanchyn, V. V.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: Journal of Mechanical Engineering 2019
Теми:
Онлайн доступ:https://journals.uran.ua/jme/article/view/154471
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

Репозиторії

Journal of Mechanical Engineering
Опис
Резюме:Hydrogen as an environmentally friendly energy carrier is increasingly used in various sectors of the economy of industrialized countries, primarily to improve the environmental situation. Regardless of the field of application, metal hydride installations are energy conversion facilities, which is why the development of the scientific and technical principles of their creation is a new scientific direction of industrial heat and power engineering. The paper considers the peculiarities of the heat and mass exchange process in a hydrogen-metal system, which takes place in metal-hydride installations. A mathematical model of non-stationary heat and mass exchange processes in metal hydride complex-design devices is proposed. The results of the calculation and theoretical research performed by the authors about the prospects of using modern metal hydride technologies are presented. On the basis of the calculation and theoretical research, the influence of the accuracy of setting the heat transfer factor on the dynamics of hydrogen desorption is analyzed. The main factors that influence the choice of the geometric dimensions of a metal hydride element are identified. One of the peculiarities of the model is its versatility, which makes it possible to use it in modeling various types of energy-converting metal-hydride installations, as well as optimizing the design and operating modes of the designed metal-hydride systems. The introduction of the proposed technological solutions for creating metal hydride equipment opens up prospects of creating a wide range of specialized energy conversion installations, which will increase the level of utilizing secondary energy resources at different industrial enterprises, create real prerequisites for reducing thermal pollution of the environment and be an important step towards the implementation of Ukraine’s economic integration into the Pan-European system.