Assessment of Resource Parameters of the Extended Operation High-Pressure Rotor of the K-1000-60/3000 Turbine

The reliable operation of nuclear power plants (NPPs) is a prerequisite for the constant development of Ukraine's energy sector. At the current stage of development, a considerable part of the NPP steam turbine equipment is reaching its end-of-design-life value. The continuation of the operatio...

Full description

Saved in:
Bibliographic Details
Date:2019
Main Authors: Chernousenko, Olha Yu., Peshko, Vitalii A.
Format: Article
Language:English
Ukrainian
Published: Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України 2019
Subjects:
Online Access:https://journals.uran.ua/jme/article/view/188833
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mechanical Engineering

Institution

Journal of Mechanical Engineering
Description
Summary:The reliable operation of nuclear power plants (NPPs) is a prerequisite for the constant development of Ukraine's energy sector. At the current stage of development, a considerable part of the NPP steam turbine equipment is reaching its end-of-design-life value. The continuation of the operation of NPPs beyond original design life requires that the remaining useful life of its main components be verified. A model for the estimation of the resource parameters of the high-pressure (HP) rotor of a K-1000-60/3000 steam turbine has been developed. On the basis of the three-dimensional spatial analogue, the calculation of the thermal and stress-strain states of the HP rotor has been performed for all typical operating modes. It has been established that the stress concentration zones are the fillets and relief holes in the first stages, as well as the axial relief holes in the fourth and fifth stages. The calculation of the rate of cyclic damage accumulation in the base metal has been performed using correlational low-cycle fatigue dependencies, since there are no experimental data on the resistance of steel grade 30KhN3M1FA, from which the rotor is made, in the literature. Permissible values of the number of startup cycles from different thermal states and the permissible operating time under steady-state operating modes have been calculated. The level of the accumulated cyclic and static damage has been estimated for the HP rotor of Rivne NPP (RNPP) Unit 3. The loss of long-term steel strength, as a mechanism of destruction, has been found to have a dominant influence on the resource performance of the rotor under study, compared to low-cycle fatigue. The static component, Dst, of the accumulated damage of the HP rotor of the K-1000-60/3000 turbine of RNPP Unit 3 is 77%, the cyclic one Dcy is 11%. The individual remaining useful life is 26,287 hours, which allows extending the HP rotor life by additional 25 thousand hours.