The numerical simulation of a 3D flow in the VKI-GENOA turbine cascade taking into account the laminar-turbulent transition

This study presents a numerical simulation of a 3D viscous flow in the VKI-Genoa cascade that takes into account the laminar-turbulent transition. The numerical simulation is performed using the Reynolds-averaged Navier-Stokes equations and the two-equation k-ω SST turbulence model. The algebraic Pr...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Ершов, С. В., Деревянко, А. И., Яковлев, В. А., Гризун, М. Н.
Format: Article
Language:Russian
Published: Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України 2015
Subjects:
Online Access:https://journals.uran.ua/jme/article/view/51268
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mechanical Engineering

Institution

Journal of Mechanical Engineering
Description
Summary:This study presents a numerical simulation of a 3D viscous flow in the VKI-Genoa cascade that takes into account the laminar-turbulent transition. The numerical simulation is performed using the Reynolds-averaged Navier-Stokes equations and the two-equation k-ω SST turbulence model. The algebraic Production Term Modification model is used for modeling the laminar-turbulent transition. Computations of both fully turbulent and transitional flows are carried out. The contours of the Mach number, the turbulence kinetic energy, the entropy function, as well as limiting streamlines are presented. The analysis of the numerical results demonstrates the influence of the laminar-turbulent transition on the secondary flow pattern. The comparison between the present computational results and the existing experimental and numerical data shows that the proposed approach reflects sufficiently the physics of the laminar-turbulent transition in turbine cascades.