New Approaches for Reducing Artificial Oscillations in Numerical Solutions. Anti-Diffusion, Anti-Dispersion and Longoliers

Two most known errors is the artificial smoothing of the solution and oscillations in the solutions near the places with high derivatives of the solutions (near the sharp fronts of the solution). Some methods of improving numerical solutions of evolution equations are proposed on the base of theoret...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Макаренко, Александр Сергеевич
Формат: Стаття
Мова:rus
Опубліковано: Кам'янець-Подільський національний університет імені Івана Огієнка 2019
Онлайн доступ:http://mcm-math.kpnu.edu.ua/article/view/174183
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Mathematical and computer modelling. Series: Physical and mathematical sciences

Репозитарії

Mathematical and computer modelling. Series: Physical and mathematical sciences
Опис
Резюме:Two most known errors is the artificial smoothing of the solution and oscillations in the solutions near the places with high derivatives of the solutions (near the sharp fronts of the solution). Some methods of improving numerical solutions of evolution equations are proposed on the base of theoretical considerations. The artificial viscosity and artificial dispersion for difference schemes of gas dynamics are proposed as the first examples. A new class of tools for improving numerical solutions is proposed — «Langoliers». «Langoliers» are special difference operators which should be applied at each time steps after the running of original difference schemes. The design of «Langoliers» allows reducing the dissipative and dispersive errors of schemes. The examples are anti-diffusion, anti-dispersion and specially constructed difference schemes