ПІДСУМОВУВАННЯ ФУНКЦІОНАЛЬНИХ РЯДІВ ЗА ВЛАСНИМИ ЕЛЕМЕНТАМИ ГІБРИДНОГО ДИФЕРЕНЦІАЛЬНОГО ОПЕРАТОРА ЕЙЛЕРА — ФУР'Є — (КОНТОРОВИЧА–ЛЄБЄДЄВА) НА СЕГМЕНТІ ПОЛЯРНОЇ ОСІ
Методом порівняння розв'язку крайової задачі для системи диференціальних рівнянь Ейлера, Фур'є та (Конторовича-Лєбєдєва) на сегменті полярної осі з двома точками спряження, побудованого, з одного боку, методом функцій Коші, а, з другого боку, методом відповідного скінченного гібридного інт...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Кам'янець-Подільський національний університет імені Івана Огієнка
2010
|
Теми: | |
Онлайн доступ: | http://mcm-math.kpnu.edu.ua/article/view/23714 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Mathematical and computer modelling. Series: Physical and mathematical sciences |
Репозиторії
Mathematical and computer modelling. Series: Physical and mathematical sciencesРезюме: | Методом порівняння розв'язку крайової задачі для системи диференціальних рівнянь Ейлера, Фур'є та (Конторовича-Лєбєдєва) на сегменті полярної осі з двома точками спряження, побудованого, з одного боку, методом функцій Коші, а, з другого боку, методом відповідного скінченного гібридного інтегрального перетворення (СГІП), підсумовано поліпараметричну сім'ю функціональних рядів за власними елементами відповідного гібридного диференціального оператора (ГДО). |
---|