МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ФІЛЬТРАЦІЙНОЇ КОНСОЛІДАЦІЇ В БАГАТОКОМПОНЕНТНИХ НЕОДНОРІДНИХ ЦИЛІНДРИЧНИХ СЕРЕДОВИЩАХ ВОЛОГОМІСТКИХ ПОРИСТИХ ЧАСТИНОК МЕТОДАМИ ІНТЕГРАЛЬНИХ ПЕРЕТВОРЕНЬ

Методами інтегральних перетворень Ганкеля 2-го роду і Фур’є побудовано аналітичний розв’язок узагальненої нами змішаної крайової задачі для фільтраційної консолідації в багатокомпонентних неоднорідних циліндричних середовищах вологомістких пористих частинок. Обґрунтована розв’язність крайової задачі...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Петрик, Михайло Романович, Петрик, Марія Михайлівна
Формат: Стаття
Мова:Ukrainian
Опубліковано: Кам'янець-Подільський національний університет імені Івана Огієнка 2012
Теми:
Онлайн доступ:http://mcm-math.kpnu.edu.ua/article/view/23844
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Mathematical and computer modelling. Series: Physical and mathematical sciences

Репозитарії

Mathematical and computer modelling. Series: Physical and mathematical sciences
Опис
Резюме:Методами інтегральних перетворень Ганкеля 2-го роду і Фур’є побудовано аналітичний розв’язок узагальненої нами змішаної крайової задачі для фільтраційної консолідації в багатокомпонентних неоднорідних циліндричних середовищах вологомістких пористих частинок. Обґрунтована розв’язність крайової задачі. Досліджена обчислювальна збіжність розв’язку у вигляді вкладених сум за різними послідовностями спектральних значень. Здійснено комплексне чисельне моделювання і аналіз динаміки просторово-розподілених полів тисків в рідині в багатокомпонентному неоднорідному циліндричному середовищі мікропористих частинок.