МОДЕЛЬ АВТОМАТИЧНОЇ АДАПТАЦІЇ ДІАГНОСТИЧНОЇ НЕЙРОМЕРЕЖЕВОЇ СТРУКТУРИ ДО РОЗПІЗНАВАННЯ ВИПАДКОВИХ ОБ’ЄКТІВ ЗА УМОВ АПРІОРНОЇ НЕВИЗНАЧЕНОСТІ МНОЖИНИ КЛАСІВ
В роботі запропоновано підхід до навчання та автоматичної адаптації діагностичної нейромережевої структури в умовах апріорної невизначеності множини класів, що підлягають розпізнаванню. Цей підхід реалізовано на основі визначення моменту розладки випадкового часового ряду із використанням авторегрес...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Kamianets-Podilskyi National Ivan Ohiienko University
2009
|
Теми: | |
Онлайн доступ: | http://mcm-tech.kpnu.edu.ua/article/view/24013 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Mathematical and computer modelling. Series: Technical sciences |
Репозитарії
Mathematical and computer modelling. Series: Technical sciencesРезюме: | В роботі запропоновано підхід до навчання та автоматичної адаптації діагностичної нейромережевої структури в умовах апріорної невизначеності множини класів, що підлягають розпізнаванню. Цей підхід реалізовано на основі визначення моменту розладки випадкового часового ряду із використанням авторегресійної моделі. |
---|